文章编号: 0253-2239(2008)Supplement-0028-04

小型可调谐单纵模 TEA CO₂ 激光器

王元虎 曲彦臣 赵卫疆 任德明 胡孝勇

(哈尔滨工业大学光电子技术研究所,黑龙江哈尔滨 150001)

摘要 对在三镜腔中插入法布里--珀罗(F-P)标准具实现单纵模激光输出的方法进行了分析,计算了激光器的输出 特性。设计研制了一台单纵模可调谐 TEA CO₂ 激光器。采用在三镜腔中插入 F-P 标准具的方法实现了单纵模激 光的调谐输出。当激光器以 5 Hz 重复频率运转时,得到 9P(16)谱线能量大于 200 mJ,脉冲宽度约为 150 ns。 关键词 激光技术; TEA CO₂ 激光器;单纵模;可调谐 中图分类号 TN248.2⁺2 文献标识码 A doi: 10.3788/AOS200828s1.0028

Compact Single Longitudinal Mode Tunable TEA CO₂ Laser

Wang Yuanhu Qu Yanchen Zhao Weijiang Ren Deming Hu Xiaoyong

(Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China)

Abstract A method of single longitudinal mode (SLM) TEA CO_2 laser output by inserting a Fabry-Pérot etalon into the three-mirror cavity is presented. The output characteritics are calculated. SLM tunable TEA CO_2 laser is designed and demonstrated, and tunable SLM laser output is realized. The energy over 200 mJ with pulse width of 150 ns is achieved for 9P(16) spectral line at 5 Hz repitition.

Key words laser technology; TEA CO2 laser; single longitudinal mode; tunability

1 引

言

单纵模 TEA CO₂ 激光器作为一种具有窄线 宽、光滑的时间和空间波形、高功率等优点的光源, 广泛应用于分子光谱学、激光雷达、光学抽运远红外 激光器以及大气遥感监测等诸多领域中^[1~6]。1969 年,M. Hercher 采用腔内加入标准具的方法首次得 到了 TEA CO₂ 激光器的单纵模输出^[7],此后,各国 科研机构掀起了单纵模 TEA CO₂ 激光器的研究热 潮。目前,主要采用短腔法、注入模式锁定、混合谐 振腔、谐振腔内组入光学元件,在谐振腔内放入吸收 盒,利用声光元件,以及利用环形腔等方法实现单纵 模激光输出^[8~14]。

我国在二十世纪八十年代开展了单纵模 TEA CO₂ 激光器的研究工作。具有代表性的有中科院 上海光机所蔡英时等研制了一台采用光栅选频混合 式单纵模 TEA CO₂ 激光器,输出能量为 0.2 J,重 复频率为 1 Hz^[15]。中山大学罗锡璋等研制了可选 纵模的 TEA CO₂ 激光器光抽运远红外激光器,采 用标准具选取纵模的方案,对 CO₂ 9P(16)支激光谱 线进行了选取纵模实验,测得单纵模的输出波 形^[16]。这表明,我国对单纵模 TEA CO₂ 激光器研 究起步较晚,但已取得了一系列的成果。

带有标准具的三镜腔 TEA CO₂ 激光器结构紧 凑,光学调整简单,光学元件容易得到,能够达到高 脉冲能量输出^[17]。本文设计并研制一台单纵模 TEA CO₂ 激光器,采用在三镜腔中插入标准具的选 模方法,实现了单纵模激光输出。

2 理论分析

激光器的谐振腔是由输出耦合镜和光栅构成的 主腔(腔长为L)与部分反射镜和光栅组成的子腔 (腔长为L_{sub})偶合而成,其结构如图1所示。输出 激光的纵模间隔由 c/2L 决定(c 为光速)。对三镜 腔的主要参量进行数值计算,分析各参量与激光模 式的关系,从而确定此种谐振腔能否得到单纵模的 运转。

基金项目:哈尔滨工业大学优秀青年教师培养计划(HITQNJS. 2006. 025)和哈尔滨工业大学优秀团队支持计划资助课题。 作者简介:王元虎(1982-),男,博士研究生,主要从事可调谐激光技术方面的研究。E-mail;wangyuanhu@126.com 导师简介:任德明(1969-),男,教授,博士,主要从事激光技术及应用方面的研究。E-mail;co2@hit.edu.cn

图 1 激光谐振腔结构示意图

Fig. 1 Schematic of laser resonator structure

2.1 子腔的组合反射率

当激光器运行时,子腔可以近似为反射镜,其反 射率 R 由振荡光的频率 ν 决定。当光在子腔中经过 多次振荡后,其总的出射光波为

$$E_{\rm r} = -E_0 \exp(\mathrm{i}\omega t) \left[r_1 + \frac{t_1^2 t_{\rm e}^2 r_{\rm g} \exp(\mathrm{i}\delta)}{1 - t_{\rm e}^2 r_{\rm g} r_1 \exp(\mathrm{i}\pi) \exp(\mathrm{i}\delta)} \right],$$

$$\delta = \frac{4\pi}{\lambda} L_{\rm sub}, \qquad (1)$$

式中 $\omega = 2\pi\nu$ 为圆频率, r_1 为部分反射镜 M₁的振幅反 射系数, t_1 为 M₁的透射率, t_e 为法布里-珀罗(F-P)标 准具的透射率, r_g 为光栅的反射系数, λ 为入射光波 长。计算中近似振荡光波为平面波。进而得到三镜腔 的组合反射率(图 2)为

$$R(\nu) = \frac{E_{\rm r}E_{\rm r}^*}{E_{\rm o}E_{\rm o}^*} = \frac{r_1^2 + 2r_1r_{\rm g}t_{\rm e}^2\cos\delta + t_{\rm e}^4r_1^2}{1 + 2t_{\rm e}^2r_{\rm g}r_1\cos\delta + t_{\rm e}^4r_{\rm g}^2r_1^2}.$$
 (2)

标准具的透射率为

$$t_{\rm e} = \left(1 - \frac{A}{1 - R_{\rm e}}\right) \left/ \left[1 + \frac{4R_{\rm e}}{(1 - R_{\rm e})^2} \sin^2(\delta/2)\right]^{1/2},$$

$$\delta = \frac{4\pi}{\lambda} \mu d\cos\theta, \qquad (3)$$

其中,A为吸收率,R。为标准具的表面反射率, μ为标

准具折射率,d为标准具厚度。

计算中所使用的参量: λ =9.6 μm,L=1500 mm, L_{sub} =100 mm,部分反射镜的反射率 R_1 =15%, R_e = 60%, μ =2.4,d=15 mm。得到子腔的组合反射率随 振荡光频率的变化如图 3 所示。

图 3 子腔的组合反射率随频率的变化 Fig. 3 Combined reflectivity of subcavity versus frequency

2.2 模式分辨力

分别考虑增益为 *a_x*,*a_y*的两个模式 *x*,*y*,模式分 辨力可以由这两个模式的强度比来表征^[18]:

$$\frac{I_x}{I_y} = \left\{ \frac{R_x}{R_y} \exp[2L'(\alpha_x - \alpha_y)] \right\}^{N_r}, \qquad (4)$$

其中*R_x、R_y*分别为*x*模式与*y*模式的反射率,*N_r*为光 在腔中往返的次数。

若两个模式相邻,它们具有相同的增益、不同的 反射率,(4)式可以简化为

$$\frac{I_x}{I_y} = \left(\frac{R_x}{R_y}\right)^{N_r},\tag{5}$$

由(2)式计算可以得到 $R_x/R_y = 1.24$,若 $N_r = 40$,由 (5)式 $I_x/I_y = 5.5 \times 10^3$ 。因此,激光器可以抑制其它 模式的振荡而确保单纵模的产生。

3 实验研究

实验装置如图 4 所示。实验中,激光器工作气体 混合比为 CO₂:N₂:He=1:1:3,气压为 0.93×10⁵ Pa,

图 4 实验系统 Fig. 4 Experimental system

28 卷

所用的光栅刻线数为 150 线/mm,闪耀波长为 9.7 μm,输出耦合镜的透射率为 20%。使用 818E-20-50L 能量探测计进行激光能量检测,用光伏型 HgCdTe 探测器及与之相匹配的前置放大器测量脉 冲波形,由平面光栅单色仪监测波长,使用带宽为 2.5 GHz 的 TDS3032B 数字存储示波器显示激光 脉冲波形。在单脉冲运转的情况下,实现了单纵模 的调谐输出。在放电电压 24 kV,重复频率为 5 Hz 的条件下,得到 9P(16)谱线单纵模输出能量超过 200 mJ。实验中所得到的 9P(16)谱线脉冲波形及 其傅里叶变换如图 5 所示。

图 5(a)表示当没有进行模式选择时,激光器等 频率间隔的多个纵模同时振荡,使得输出脉冲波形 为相邻纵模的拍频。当使用插入标准具的三镜腔进 行选模时,如图 5(b)所示,其傅里叶变换曲线只含 有基波成分,因此是单纵模振荡。

图 5 9P(16)谱线的脉冲波形及其傅里叶变换谱。(a)多纵模运行,(b)单纵模运行 Fig. 5 Pulse shape of TEA CO₂ laser oscillation (upper) and its Fourier transform spectrum (lower) of 9P(16) spectral line (a) with multiple longitudinal mode, (b) with single longitudinal mode

4 结 论

对三镜腔 TEA CO₂ 激光器的输出特性进行了计 算,按照计算结果,设计并研制了一台可调谐单纵模 TEA CO₂ 激光器。实现了激光器调谐输出,得到激 光器单脉冲能量超过 200 mJ[9P(16)],激光脉冲宽度 150 ns。当激光器运行时,由于部分反射镜的保护,振 荡光没有对 F-P 标准具和光栅造成损伤。

参考文献

- 1 Ding Changlin, Wan Chongyi. Numerical simulation of injection locking of pulsed CO₂ lasers[J]. Acta Optica Sinica, 2006, 26 (11): 1705~1709
 - 丁长林,万重怡.脉冲 CO₂ 激光器注入锁定特性的数值模拟 [J].光学学报,2006,**26**(11):1705~1709
- 2 Zheng Yijun, Tan Rongqing, Wang Donglei et al.. Coupling

coefficient for TEA CO_2 laser propulsion with variable pulse repetition rate[J]. Chin. Opt. Lett., 2006, 4(2): $99 \sim 100$

- 3 A. R. Bahrampour, A. A. Askari. Fourier-wavelet regularized deconvolution (ForWaRD) for lidar systems based on TEA-CO₂ laser[J]. Opt. Commun., 2006, 257: 97~111
- 4 Wang Yuanhu, Qu Yanchen, Zhao Weijiang *et al.*. Experimental research on a tunable TEA CO₂ laser by a two dimension scanning system[J]. *Chin. J. Lasers*, 2008, **35**(3): 359~362 王元虎,曲彦臣,赵卫疆等. 二维振镜调谐 TEA CO₂ 激光器的 实验研究[J]. 中国激光, 2008, **35**(3): 359~362
- 5 Zheng Yijun, Tan Rongqing, Ke Changjun *et al.*. Effect of pulse waveform on momentum coupling coefficient [J]. *Chin. J. Lasers*, 2006, **33**(11): 1472~1476 郑义军,谭荣清,柯常军等. 脉冲波形对冲量耦合系数的影响 [J]. 中国激光, 2006, **33**(11): 1472~1476
- 6 Ren Deming, Wang Yuanhu, Qu Yanchen *et al.*. Research of rapidly tuned TEA CO₂ laser by a scanning mirror[J]. *Chin. J. Lasers*, 2007, **34**(8): 1027~1031 任德明,王元虎,曲彦臣 等. 采用扫描振镜方式的快调谐 TEA CO₂ 激光器的研究[J]. 中国激光, 2007, **34**(8): 1027~1031

- 7 M. Hercher. Tunable single mode operation of gas lasers using intracavity tilted etalons[J]. Appl. Opt., 1969, 8: 1103~1106
- 8 Wouter Klopper, Kalina Bagrova, Johan du Plsanle et al.. Shortcavity high-repetition-rate CO₂ laser[J]. Opt. Engng., 1994, 33(9): 2866~2869
- 9 J. L. Bruneau. A tunable single-longitudinal-mode CO₂ oscillator for efficient optical pumping [J]. Opt. Commun., 1982, 41: 443~446
- 10 R. Behn, I. Kjelberg, P. D. Morgan *et al.*. A high power D₂O laser optimized for microsecond pulse duration [J]. J. Appl. Phys., 1983, 54: 2995~3002
- 11 J. P. Nicholson, K. S. Lipton. A tunable stabilized single-mode TEA CO₂ laser[J]. Appl. Phys. Lett., 1977, **31**(7): 430~434
- 12 M. Gundersen, R. A. Dougal, C. R. Jones *et al.*. Tunable single-mode operation of a CO₂ TE laser by means of selective absorbers[J]. *IEEE J. Quant. Electron.*, 1979, **QE-15**(3): 125~128
- 13 草場光博、上東直也、綱脇恵章等. TEA CO₂ レーザーの単一 モード発振およびそのパルス幅制御[J]. 日本赤外線学会誌, 1998,8(1):45~52

- 14 A. Kumar, J. P. Nilaya, D. J. Biswas. Single mode lasing from a TEA CO₂ laser by the elimination of spatial hole burning effect [J]. Opt. Commun., 2005, 245: 289~293
- 15 Cai Yingshi, Yi Jingrong, Niu Wanqing. Experimental study of a hybrid TEA CO₂ laser[J]. Acta Optica Sinica, 1984, 4(2): 168~171
 蔡英时,伊景荣,牛万青. 混合型 TEA CO₂ 激光器的实验研究

[J]. 光学学报, 1984, **4**(2): 168~171

- 16 Luo Xizhang, Zheng Xinshi, Lin Yi. A longitudinal mode selected TEA CO₂ laser [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1997, 36(5): 23~25 罗锡璋,郑兴世,林 贻. 可选纵模的 TEA CO₂ 激光器[J]. 中 山大学学报(自然科学版),1997, 36(5): 23~25
- 17 Joachim Knittel, Damien P. Scherrer, Fritz K. Kneubuhl. Highpressure single-mode CO₂ laser with picosecond plasma shutter [J]. Opt. Engng., 1995, 34(7): 2000~2016
- 18 L. R. Botha, R. N. Campbell, E. Ronander *et al.*. Numerical investigation of a three-mirror resonator for a TE CO₂ laser[J]. *Appl. Opt.*, 1991, **30**(18): 2447~2452